Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Lancet Microbe ; 4(6): e397-e408, 2023 06.
Article in English | MEDLINE | ID: covidwho-2294174

ABSTRACT

BACKGROUND: Despite circumstantial evidence for aerosol and fomite spread of SARS-CoV-2, empirical data linking either pathway with transmission are scarce. Here we aimed to assess whether the presence of SARS-CoV-2 on frequently-touched surfaces and residents' hands was a predictor of SARS-CoV-2 household transmission. METHODS: In this longitudinal cohort study, during the pre-alpha (September to December, 2020) and alpha (B.1.1.7; December, 2020, to April, 2021) SARS-CoV-2 variant waves, we prospectively recruited contacts from households exposed to newly diagnosed COVID-19 primary cases, in London, UK. To maximally capture transmission events, contacts were recruited regardless of symptom status and serially tested for SARS-CoV-2 infection by RT-PCR on upper respiratory tract (URT) samples and, in a subcohort, by serial serology. Contacts' hands, primary cases' hands, and frequently-touched surface-samples from communal areas were tested for SARS-CoV-2 RNA. SARS-CoV-2 URT isolates from 25 primary case-contact pairs underwent whole-genome sequencing (WGS). FINDINGS: From Aug 1, 2020, until March 31, 2021, 620 contacts of PCR-confirmed SARS-CoV-2-infected primary cases were recruited. 414 household contacts (from 279 households) with available serial URT PCR results were analysed in the full household contacts' cohort, and of those, 134 contacts with available longitudinal serology data and not vaccinated pre-enrolment were analysed in the serology subcohort. Household infection rate was 28·4% (95% CI 20·8-37·5) for pre-alpha-exposed contacts and 51·8% (42·5-61·0) for alpha-exposed contacts (p=0·0047). Primary cases' URT RNA viral load did not correlate with transmission, but was associated with detection of SARS-CoV-2 RNA on their hands (p=0·031). SARS-CoV-2 detected on primary cases' hands, in turn, predicted contacts' risk of infection (adjusted relative risk [aRR]=1·70 [95% CI 1·24-2·31]), as did SARS-CoV-2 RNA presence on household surfaces (aRR=1·66 [1·09-2·55]) and contacts' hands (aRR=2·06 [1·57-2·69]). In six contacts with an initial negative URT PCR result, hand-swab (n=3) and household surface-swab (n=3) PCR positivity preceded URT PCR positivity. WGS corroborated household transmission. INTERPRETATION: Presence of SARS-CoV-2 RNA on primary cases' and contacts' hands and on frequently-touched household surfaces associates with transmission, identifying these as potential vectors for spread in households. FUNDING: National Institute for Health Research Health Protection Research Unit in Respiratory Infections, Medical Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Prospective Studies , RNA, Viral/genetics , Longitudinal Studies , Risk Factors , Cohort Studies
2.
Lancet Microbe ; 3(11): e814-e823, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1996842

ABSTRACT

BACKGROUND: Assessing transmission of SARS-CoV-2 by children in schools is of crucial importance to inform public health action. We assessed frequency of acquisition of SARS-CoV-2 by contacts of pupils with COVID-19 in schools and households, and quantified SARS-CoV-2 shedding into air and onto fomites in both settings. METHODS: We did a prospective cohort and environmental sampling study in London, UK in eight schools. Schools reporting new cases of SARS-CoV-2 infection to local health protection teams were invited to take part if a child index case had been attending school in the 48 h before a positive SARS-CoV-2 PCR test. At the time of the study, PCR testing was available to symptomatic individuals only. Children aged 2-14 years (extended to <18 years in November, 2020) with a new nose or throat swab SARS-CoV-2 positive PCR from an accredited laboratory were included. Incidents involving exposure to at least one index pupil with COVID-19 were identified (the prevailing variants were original, α, and δ). Weekly PCR testing for SARS-CoV-2 was done on immediate classroom contacts (the so-called bubble), non-bubble school contacts, and household contacts of index pupils. Testing was supported by genome sequencing and on-surface and air samples from school and home environments. FINDINGS: Between October, 2020, and July, 2021 from the eight schools included, secondary transmission of SARS-CoV-2 was not detected in 28 bubble contacts, representing ten bubble classes (participation rate 8·8% [IQR 4·6-15·3]). Across eight non-bubble classes, 3 (2%) of 62 pupils tested positive, but these were unrelated to the original index case (participation rate 22·5% [9·7-32·3]). All three were asymptomatic and tested positive in one setting on the same day. In contrast, secondary transmission to previously negative household contacts from infected index pupils was found in six (17%) of 35 household contacts rising to 13 (28%) of 47 household contacts when considering all potential infections in household contacts. Environmental contamination with SARS-CoV-2 was rare in schools: fomite SARS-CoV-2 was identified in four (2%) of 189 samples in bubble classrooms, two (2%) of 127 samples in non-bubble classrooms, and five (4%) of 130 samples in washrooms. This contrasted with fomites in households, where SARS-CoV-2 was identified in 60 (24%) of 248 bedroom samples, 66 (27%) of 241 communal room samples, and 21 (11%) 188 bathroom samples. Air sampling identified SARS-CoV-2 RNA in just one (2%) of 68 of school air samples, compared with 21 (25%) of 85 air samples taken in homes. INTERPRETATION: There was no evidence of large-scale SARS-CoV-2 transmission in schools with precautions in place. Low levels of environmental contamination in schools are consistent with low transmission frequency and suggest adequate cleaning and ventilation in schools during the period of study. The high frequency of secondary transmission in households associated with evident viral shedding throughout the home suggests a need to improve advice to households with infection in children to prevent onward community spread. The data suggest that SARS-CoV-2 transmission from children in any setting is very likely to occur when precautions are reduced. FUNDING: UK Research and Innovation and UK Department of Health and Social Care, National Institute for Health and Care Research.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , COVID-19/epidemiology , Sampling Studies , Prospective Studies , London/epidemiology , RNA, Viral , Schools
3.
J Virol Methods ; 309: 114607, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1983588

ABSTRACT

Demand for accurate SARS-CoV-2 diagnostics is high. Most samples in the UK are collected in the community and rely on the postal service for delivery to the laboratories. The current recommendation remains that swabs should be collected in Viral Transport Media (VTM) and transported with a cold chain to the laboratory for RNA extraction and RT-qPCR. This is not always possible. We aimed to test the stability of SARS-CoV-2 RNA subjected to different pre-analytical conditions. Swabs were dipped into PBS containing cultured SARS-CoV-2 and placed in either a dry tube or a tube containing either normal saline or VTM. The tubes were then stored at different temperatures (20-50 °C) for variable periods (8 h to 5 days). Samples were tested by RT-qPCR targeting SARS-CoV-2 E gene. VTM outperformed swabs in saline and dry swabs in all conditions. Samples in VTM were stable, independent of a cold chain, for 5 days, with a maximum increase in cycle threshold (Ct) of 1.34 when held at 40 °C. Using normal saline as the transport media resulted in a loss of sensitivity (increased Ct) over time and with increasing temperature (up to 7.8 cycles compared to VTM). SARS-CoV-2 was not detected in 3/9 samples in normal saline when tested after 120 h incubation. Transportation of samples in VTM provides a high level of confidence in the results despite the potential for considerable, uncontrolled variation in temperature and longer transportation periods. False negative results may be seen after 96 h in saline and viral loads will appear lower.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saline Solution , Specimen Handling/methods
4.
Front Med (Lausanne) ; 9: 859115, 2022.
Article in English | MEDLINE | ID: covidwho-1809423

ABSTRACT

Human T lymphotropic virus 1 (HTLV-1) is a public health issue for most countries and imposes important consequences on patients' health and socioeconomic status. Brazil is one of the global leaders of the public health response to these viruses. The country has challenges to overcome to implement meaningful policies aiming to eliminate HTLV-1/2. An analysis of strengths, weaknesses, opportunities, and threats (SWOT) for the implementation of public health policies on HTLV-1/2 was performed. The strengths identified were the Brazilian Unified Health System (SUS); Brazilian expertise in public health programs successfully implemented; currently available policies targeting HTLV; and strong collaboration with researchers and patient's representative. Lack of awareness about HTLV, insufficient epidemiological data, lack of reference centers for patient care, insufficient availability of confirmatory tests, lack of universal antenatal screening, and absence of cost-effectiveness studies were identified as weaknesses. Some interesting opportunities included the increased interest from international organizations on HTLV, possibility of integrating HTLV into other programs, external funding for research, available online platforms, opportunity to acquire data from HTLV-1/2 surveillance to gather epidemiological information, and HTLV policies that were implemented independently by states and municipalities. In addition to the COVID-19 pandemic, existing demands from different diseases, the country's demography and its marked sociocultural diversity and the volatility of the technical team working with HTLV-1/2 at the Brazilian Ministry of Health are threats to the implementation of public policies on HTLV-1/2. This SWOT analysis will facilitate strategic planning to allow continuous progress of the Brazilian response to HTLV-1/2 infection.

5.
Sci Rep ; 12(1): 1885, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1671623

ABSTRACT

At-home sampling is key to large scale seroprevalence studies. Dried blood spot (DBS) self-sampling removes the need for medical personnel for specimen collection but facilitates specimen referral to an appropriately accredited laboratory for accurate sample analysis. To establish a highly sensitive and specific antibody assay that would facilitate self-sampling for prevalence and vaccine-response studies. Paired sera and DBS eluates collected from 439 sero-positive, 382 sero-negative individuals and DBS from 34 vaccine recipients were assayed by capture ELISAs for IgG and IgM antibody to SARS-CoV-2. IgG and IgM combined on DBS eluates achieved a diagnostic sensitivity of 97.9% (95%CI 96.6 to 99.3) and a specificity of 99.2% (95% CI 98.4 to 100) compared to serum, displaying limits of detection equivalent to 23 and 10 WHO IU/ml, respectively. A strong correlation (r = 0.81) was observed between serum and DBS reactivities. Reactivity remained stable with samples deliberately rendered inadequate, (p = 0.234) and when samples were accidentally damaged or 'invalid'. All vaccine recipients were sero-positive. This assay provides a secure method for self-sampling by DBS with a sensitivity comparable to serum. The feasibility of DBS testing in sero-prevalence studies and in monitoring post-vaccine responses was confirmed, offering a robust and reliable tool for serological monitoring at a population level.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Dried Blood Spot Testing/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology , Specimen Handling/methods , Biomarkers/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Feasibility Studies , Female , Humans , Male , Sensitivity and Specificity , Seroepidemiologic Studies
7.
Nat Commun ; 13(1): 80, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1616982

ABSTRACT

Cross-reactive immune responses to SARS-CoV-2 have been observed in pre-pandemic cohorts and proposed to contribute to host protection. Here we assess 52 COVID-19 household contacts to capture immune responses at the earliest timepoints after SARS-CoV-2 exposure. Using a dual cytokine FLISpot assay on peripheral blood mononuclear cells, we enumerate the frequency of T cells specific for spike, nucleocapsid, membrane, envelope and ORF1 SARS-CoV-2 epitopes that cross-react with human endemic coronaviruses. We observe higher frequencies of cross-reactive (p = 0.0139), and nucleocapsid-specific (p = 0.0355) IL-2-secreting memory T cells in contacts who remained PCR-negative despite exposure (n = 26), when compared with those who convert to PCR-positive (n = 26); no significant difference in the frequency of responses to spike is observed, hinting at a limited protective function of spike-cross-reactive T cells. Our results are thus consistent with pre-existing non-spike cross-reactive memory T cells protecting SARS-CoV-2-naïve contacts from infection, thereby supporting the inclusion of non-spike antigens in second-generation vaccines.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Contact Tracing/methods , Cross Reactions/immunology , Memory T Cells/immunology , SARS-CoV-2/immunology , Adult , COVID-19/epidemiology , COVID-19/virology , Coronavirus/immunology , Coronavirus/physiology , Epitopes, T-Lymphocyte/immunology , Female , Humans , Male , Memory T Cells/metabolism , Memory T Cells/virology , Middle Aged , Pandemics/prevention & control , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/metabolism , Young Adult
8.
Sci Adv ; 7(22)2021 05.
Article in English | MEDLINE | ID: covidwho-1388434

ABSTRACT

The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite.


Subject(s)
COVID-19/immunology , Heme/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/immunology , Bilirubin/metabolism , Biliverdine/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Epitopes , Humans , Immune Sera , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
9.
J Infect Dis ; 223(10): 1671-1676, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-1246720

ABSTRACT

It is currently unknown how post-COVID-19 syndrome (PCS) may affect those infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This longitudinal study includes healthcare staff who tested positive for SARS-CoV-2 between March and April 2020, with follow-up of their antibody titers and symptoms. More than half (21 of 38) had PCS after 7-8 months. There was no statistically significant difference between initial reverse-transcription polymerase chain reaction titers or serial antibody levels between those who did and those who did not develop PCS. This study highlights the relative commonality of PCS in healthcare workers and this should be considered in vaccination scheduling and workforce planning to allow adequate frontline staffing numbers.


Subject(s)
Antibodies, Viral/biosynthesis , COVID-19/complications , Health Personnel , SARS-CoV-2/immunology , Adult , Aged , Anosmia , COVID-19/immunology , Cohort Studies , Fatigue , Female , Headache , Humans , Longitudinal Studies , Male , Middle Aged , Nasopharynx/virology , Respiratory Tract Diseases , Surveys and Questionnaires , Syndrome , United Kingdom , Young Adult
11.
BMJ ; 372: n423, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1115122

ABSTRACT

OBJECTIVE: To evaluate the performance of new lateral flow immunoassays (LFIAs) suitable for use in a national coronavirus disease 2019 (covid-19) seroprevalence programme (real time assessment of community transmission 2-React 2). DESIGN: Diagnostic accuracy study. SETTING: Laboratory analyses were performed in the United Kingdom at Imperial College, London and university facilities in London. Research clinics for finger prick sampling were run in two affiliated NHS trusts. PARTICIPANTS: Sensitivity analyses were performed on sera stored from 320 previous participants in the React 2 programme with confirmed previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Specificity analyses were performed on 1000 prepandemic serum samples. 100 new participants with confirmed previous SARS-CoV-2 infection attended study clinics for finger prick testing. INTERVENTIONS: Laboratory sensitivity and specificity analyses were performed for seven LFIAs on a minimum of 200 serum samples from participants with confirmed SARS-CoV-2 infection and 500 prepandemic serum samples, respectively. Three LFIAs were found to have a laboratory sensitivity superior to the finger prick sensitivity of the LFIA currently used in React 2 seroprevalence studies (84%). These LFIAs were then further evaluated through finger prick testing on participants with confirmed previous SARS-CoV-2 infection: two LFIAs (Surescreen, Panbio) were evaluated in clinics in June-July 2020 and the third LFIA (AbC-19) in September 2020. A spike protein enzyme linked immunoassay and hybrid double antigen binding assay were used as laboratory reference standards. MAIN OUTCOME MEASURES: The accuracy of LFIAs in detecting immunoglobulin G (IgG) antibodies to SARS-CoV-2 compared with two reference standards. RESULTS: The sensitivity and specificity of seven new LFIAs that were analysed using sera varied from 69% to 100%, and from 98.6% to 100%, respectively (compared with the two reference standards). Sensitivity on finger prick testing was 77% (95% confidence interval 61.4% to 88.2%) for Panbio, 86% (72.7% to 94.8%) for Surescreen, and 69% (53.8% to 81.3%) for AbC-19 compared with the reference standards. Sensitivity for sera from matched clinical samples performed on AbC-19 was significantly higher with serum than finger prick at 92% (80.0% to 97.7%, P=0.01). Antibody titres varied considerably among cohorts. The numbers of positive samples identified by finger prick in the lowest antibody titre quarter varied among LFIAs. CONCLUSIONS: One new LFIA was identified with clinical performance suitable for potential inclusion in seroprevalence studies. However, none of the LFIAs tested had clearly superior performance to the LFIA currently used in React 2 seroprevalence surveys, and none showed sufficient sensitivity and specificity to be considered for routine clinical use.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , Immunoassay , SARS-CoV-2/isolation & purification , Adult , Antibodies, Viral/blood , COVID-19/blood , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , Sensitivity and Specificity , Seroepidemiologic Studies , United Kingdom
12.
J Infect Dis ; 223(2): 192-196, 2021 02 03.
Article in English | MEDLINE | ID: covidwho-1060994

ABSTRACT

At the start of the UK coronavirus disease 2019 epidemic, this rare point prevalence study revealed that one-third of patients (15 of 45) in a London inpatient rehabilitation unit were found to be infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) but asymptomatic. We report on 8 patients in detail, including their clinical stability, the evolution of their nasopharyngeal viral reverse-transcription polymerase chain reaction (RT-PCR) burden, and their antibody levels over time, revealing the infection dynamics by RT-PCR and serology during the acute phase. Notably, a novel serological test for antibodies against the receptor binding domain of SARS-CoV-2 showed that 100% of our asymptomatic cohort remained seropositive 3-6 weeks after diagnosis.


Subject(s)
COVID-19/diagnosis , COVID-19/immunology , Nasopharynx/virology , Rehabilitation Centers/statistics & numerical data , SARS-CoV-2/isolation & purification , Antibodies, Viral/blood , Antibody Formation , Asymptomatic Infections/epidemiology , COVID-19/epidemiology , COVID-19/virology , Cohort Studies , Female , Humans , London/epidemiology , Male , Middle Aged , SARS-CoV-2/immunology , Serologic Tests
13.
Crit Care Med ; 49(3): 428-436, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1057891

ABSTRACT

OBJECTIVES: Critical care workers were considered to be at high risk of severe acute respiratory syndrome coronavirus-2 infection from patients during the first wave of the pandemic. Staff symptoms, previous swab testing, and antibody prevalence were correlated with patient admissions to investigate this assumption. DESIGN: Cross-sectional study. SETTING: A large critical care department in a tertiary-care teaching hospital in London, United Kingdom. SUBJECTS: Staff working in critical care. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Participants completed a questionnaire and provided a serum sample for severe acute respiratory syndrome coronavirus-2 antibody testing over a 3-day period in April 2020. We compared the timing of symptoms in staff to the coronavirus disease 2019 patient admissions to critical care. We also identified factors associated with antibody detection. Of 625 staff 384 (61.4%) reported previous symptoms and 124 (19.8%) had sent a swab for testing. Severe acute respiratory syndrome coronavirus-2 infection had been confirmed in 37 of those swabbed (29.8%). Overall, 21% (131/625) had detectable severe acute respiratory syndrome coronavirus-2 antibody, of whom 9.9% (13/131) had been asymptomatic. The peak onset of symptoms among staff occurred 2 weeks before the peak in coronavirus disease 2019 patient admissions. Staff who worked in multiple departments across the hospital were more likely to be seropositive. Staff with a symptomatic household contact were also more likely to be seropositive at 31.3%, compared with 16.2% in those without (p < 0.0001). CONCLUSIONS: Staff who developed coronavirus disease 2019 were less likely to have caught it from their patients in critical care. Other staff, other areas of the hospital, and the wider community are more likely sources of infection. These findings indicate that personal protective equipment was effective at preventing transmission from patients. However, staff also need to maintain protective measures away from the bedside.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , Critical Care , Health Personnel/statistics & numerical data , Personnel, Hospital/statistics & numerical data , Adult , COVID-19/transmission , Cross-Sectional Studies , Female , Humans , London/epidemiology , Male , Middle Aged , Patient Admission , SARS-CoV-2/pathogenicity , Tertiary Care Centers , United Kingdom/epidemiology
14.
J Infect ; 81(6): 931-936, 2020 12.
Article in English | MEDLINE | ID: covidwho-866901

ABSTRACT

BACKGROUND: Understanding of the true asymptomatic rate of infection of SARS-CoV-2 is currently limited, as is understanding of the population-based seroprevalence after the first wave of COVID-19 within the UK. The majority of data thus far come from hospitalised patients, with little focus on general population cases, or their symptoms. METHODS: We undertook enzyme linked immunosorbent assay characterisation of IgM and IgG responses against SARS-CoV-2 spike glycoprotein and nucleocapsid protein of 431 unselected general-population participants of the TwinsUK cohort from South-East England, aged 19-86 (median age 48; 85% female). 382 participants completed prospective logging of 14 COVID-19 related symptoms via the COVID Symptom Study App, allowing consideration of serology alongside individual symptoms, and a predictive algorithm for estimated COVID-19 previously modelled on PCR positive individuals from a dataset of over 2 million. FINDINGS: We demonstrated a seroprevalence of 12% (51 participants of 431). Of 48 seropositive individuals with full symptom data, nine (19%) were fully asymptomatic, and 16 (27%) were asymptomatic for core COVID-19 symptoms: fever, cough or anosmia. Specificity of anosmia for seropositivity was 95%, compared to 88% for fever cough and anosmia combined. 34 individuals in the cohort were predicted to be Covid-19 positive using the App algorithm, and of those, 18 (52%) were seropositive. INTERPRETATION: Seroprevalence amongst adults from London and South-East England was 12%, and 19% of seropositive individuals with prospective symptom logging were fully asymptomatic throughout the study. Anosmia demonstrated the highest symptom specificity for SARS-CoV-2 antibody response. FUNDING: NIHR BRC, CDRF, ZOE global LTD, RST-UKRI/MRC.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/epidemiology , Adult , Aged , Aged, 80 and over , Anosmia/epidemiology , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , England/epidemiology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Prospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Twins , Young Adult
16.
Thorax ; 75(12): 1082-1088, 2020 12.
Article in English | MEDLINE | ID: covidwho-717419

ABSTRACT

BACKGROUND: Accurate antibody tests are essential to monitor the SARS-CoV-2 pandemic. Lateral flow immunoassays (LFIAs) can deliver testing at scale. However, reported performance varies, and sensitivity analyses have generally been conducted on serum from hospitalised patients. For use in community testing, evaluation of finger-prick self-tests, in non-hospitalised individuals, is required. METHODS: Sensitivity analysis was conducted on 276 non-hospitalised participants. All had tested positive for SARS-CoV-2 by reverse transcription PCR and were ≥21 days from symptom onset. In phase I, we evaluated five LFIAs in clinic (with finger prick) and laboratory (with blood and sera) in comparison to (1) PCR-confirmed infection and (2) presence of SARS-CoV-2 antibodies on two 'in-house' ELISAs. Specificity analysis was performed on 500 prepandemic sera. In phase II, six additional LFIAs were assessed with serum. FINDINGS: 95% (95% CI 92.2% to 97.3%) of the infected cohort had detectable antibodies on at least one ELISA. LFIA sensitivity was variable, but significantly inferior to ELISA in 8 out of 11 assessed. Of LFIAs assessed in both clinic and laboratory, finger-prick self-test sensitivity varied from 21% to 92% versus PCR-confirmed cases and from 22% to 96% versus composite ELISA positives. Concordance between finger-prick and serum testing was at best moderate (kappa 0.56) and, at worst, slight (kappa 0.13). All LFIAs had high specificity (97.2%-99.8%). INTERPRETATION: LFIA sensitivity and sample concordance is variable, highlighting the importance of evaluations in setting of intended use. This rigorous approach to LFIA evaluation identified a test with high specificity (98.6% (95%CI 97.1% to 99.4%)), moderate sensitivity (84.4% with finger prick (95% CI 70.5% to 93.5%)) and moderate concordance, suitable for seroprevalence surveys.


Subject(s)
Antibodies, Viral/analysis , COVID-19/diagnosis , Immunoassay/methods , Pandemics , SARS-CoV-2/immunology , Adult , COVID-19/epidemiology , COVID-19/virology , DNA, Viral/analysis , Female , Follow-Up Studies , Humans , Male , Middle Aged , Reproducibility of Results , Retrospective Studies , SARS-CoV-2/genetics , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL